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Distribution of nearest distances between nodal points for the Berry function in two dimensions

Alexander I. Saichev,1,2 Karl-Fredrik Berggren,2 and Almas F. Sadreev2,3

1Department of Radiophysics, Nizhny Novgorod University, Gagarin prospekt 23, 603600 Nizhny Novgorod, Russia
2Department of Physics and Measurement Technology, Linko¨ping University, S-581 83 Linko¨ping, Sweden

3Kirensky Institute of Physics, 660036, Krasnoyarsk, Russia
~Received 31 October 2000; revised manuscript received 11 April 2001; published 29 August 2001!

According to Berry a wave-chaotic state may be viewed as a superposition of monochromatic plane waves
with random phases and amplitudes. Here we consider the distribution of nodal points associated with this
state. Using the property that both the real and imaginary parts of the wave function are random Gaussian fields
we analyze the correlation function and densities of the nodal points. Using two approaches~the Poisson and
Bernoulli! we derive the distribution of nearest neighbor separations. Furthermore the distribution functions for
nodal points with specific chirality are found. Comparison is made with results from numerical calculations for
the Berry wave function.
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I. INTRODUCTION

The nature of the quantum eigenstates in billiards, wh
are classically chaotic, has been subject to much theore
and experimental work. The seminal studies by McDon
and Kaufmann@1# of the morphology of the two-dimensiona
~2D! eigenstates in a closed Bunimovich stadium have
vealed characteristic complex patterns of disordered, u
rectional and noncrossing nodal lines. The spatial beha
of the eigenstates of chaotic billiards is still of considera
theoretical and experimental interest. For recent theory
e.g., Refs.@2–5#, and references cited therein; examples
measurements on electron billiards and wave-dynamical
logs are found in Ref.@6#. Other well known signatures o
quantum chaos in closed billiards are related to the distr
tion of nearest level separations and spectral rigidity.

For open billiards, i.e., billiards with attached leads, t
picture is less clear. One may use the poles of the scatte
matrix that are related to the decay time from a billia
@7–9#. When transport through a billiard takes place one m
as an alternative focus on the fact that the wave functionc is
a scattering state with both real and imaginary parts. If
restrict ourselves to 2D systems, as we will do through
this work, this means that there are two separate sets of n
lines at which either Re@c# or Im@c# vanish. The intersec
tions of the two sets at which Re@c#5Im@c#50 define the
nodal points. Numerical simulations have shown that
shape of distribution function for the nearest distances
tween these nodal points~DFNDNP! depends on whether th
billiard is nominally either regular or irregular@10#. For
transmission through chaotic billiards the DFNDNP appe
to have a general characteristic form, while for regular b
liards like, for example, rectangular ones there are spe
features of the DFNDNP that depend on the particular ge
etry, at least as long as only a few channels are open. T
besides the vivid physical role played by the nodal points
centers of vortical motion@11–17#, their statistical distribu-
tion may tell if chaos is present or not. The present wo
relates to quantum transport in open electron billiards. T
issue of wave function singularities is, however, part a mu
broader context@18–22#.

An appealing argument that favors our view th
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DFNDNP serves as a signature of quantum chaos is the
incidence with the corresponding distribution function f
the Berry state@10#. According to Berry’s conjecture a cha
otic state can be viewed as a superposition of a large num
of interfering monochromatic de Broglie waves@18#

c~r !5(
j

aj exp~ ik j•r1f j !, ~1!

whereaj and f j are independent random variables andk j
are randomly oriented wave vectors of equal length. T
Berry wave function may be regarded as a standard mea
of quantum chaos. In fact, there are beautiful experime
observations of Berry waves on the surface of water in
agitated ripple tank with stadium-shaped walls@23#.

So far all our conclusions about DFNDNP rest on nume
cal experiments@10#. The Berry state is, however, availab
in a mathematical form that invites to analytic approaches
the present work we will therefore model the DFNDNPf (r )
and its main asymptotic behavior analytically using the fu
damental property that the Berry function~1! is Gaussian
random field@18#. We will also show that there are othe
types of distribution functions that are related to the chira
of the nodal points. Each nodal point is a topological sing
larity of the wave function@12,13,15–18#. As a result there is
a vortex centered around each nodal point with defin
chirality depending on whether the current flows clockw
or counterclockwise as indicated in Fig. 1. We therefore la
each nodal point bys561. In analogy withf (r ) we there-
fore introduce the distribution functionsf s,s8(r ) for nearest
neighbor separations between points with chiralitiess and
s8. Analytic expressions for these distributions will be d
rived below and compared with numerical computations
ing the Berry wave function. As will be pointed out in th
text our results partly overlap with recent work by Berry a
Dennis@18# ~the pair correlation functionsgs,s8 and the re-
lation between the mean density and wave numberk!. Most
recently Dennis has also considered the distribution of ne
est distances among nodal points using the Poisson m
@24#. The statistical mechanics of topological defects ha
also been discussed by Halperin@25#.
©2001 The American Physical Society22-1
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FIG. 1. ~Color! Typical pattern
of nodal lines Im@c(x,y)#50 and
Re@c(x,y)#50 for the Berry func-
tion in the~x, y! plane. Nodal lines
in each set do not cross. Points
which the two sets intersect ar
the nodal points around which
there is vortical flow in either
clockwise or counterclockwise di
rection.
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In the following sections we will derive expressions f
the distributions of nearest neighbor separations betw
points with chiralitiess ands8. For this purpose we will also
have to consider the pair correlation functionsgs,s8 . We will
make use of two different analytic approaches based on
Poisson and Bernoulli models. In addition we will also c
culate the distributions by direct numerical methods, i.e.,
locate the nodal points by simply computing the nodal lin
for Im(C) and Re(C) and how they cross. In principle th
numerical results represent the correct distributions and g
us a way to test the accuracy of the different analy
approaches.

II. DEFINITION OF VARIABLES

Consider the Berry function~1! as the complex random
function

c~r !5u~r !1v~r !, ~2!

wherer is the 2D position with Cartesian coordinatesxy and
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u(r ),v(r ) are two real random fields. We assume thatu(r )
and v(r ) are mutually statistically independent, homog
neous and isotropic Gaussian random fields with zero me
The correlation function has the well known form

a~s!5^u~r !u~r1s!&5^v~r !v~r1s!&5J0~ks!, ~3!

wheres5usu andk5uku. This result is a direct consequenc
of the Berry function~1!. To find the statistical properties o
the nodal pointsr j we have to consider the intersections
the zero level curves~nodal lines! of the fields u(r ) and
v(r ), i.e., the roots of the two equations:

u~r j !5v~r j !50 ~r jPR2!.

As mentioned in the Introduction the nodal points are
centers of vortices. The associated probability currentJ(r ) is
proportional to

J~r !5Re@c* ~r !i“c~r !#5v~r !“u~r !2u~r !“v~r !. ~4!

In the present work we consider the vorticity field
2-2
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DISTRIBUTION OF NEAREST DISTANCES BETWEEN . . . PHYSICAL REVIEW E64 036222
v5“3J. ~5!

In our two-dimensional case it is normal to the~x, y! plane,
i.e., v(r )5v(r )n̂z wheren̂z is the normal unit vector. Sub
stituting Eq.~4! into Eq. ~5! we have

v~r !5@“u~r !3“v~r !#. ~6!

At the nodal pointr j

v j5v~r j !

is the angular velocity of the current in the very vicinity
r j . In the following we will call v j the vorticity of the j th
nodal point.

The nodal points are topological singularities of the co
plex function~2! because they are responsible for the vo
ces. This means that when the following loop integral e
closes a nodal point one has@11,12,15–17#

R “udr562p, ~7!

whereu is the phase of the wave function. In what follow
we use the definition

s j5
v j

uv j u
~8!

for which s j takes the values61 for clockwise and counter
clockwise vorticitiesv j , respectively. Therefore Eq.~8! de-
fines the sign of the vorticity of the nodal points. Below w
will refer to s as chirality. Alternatively it is named topologi
cal charge@18# or winding number@25#. There are as many
points with s51 as withs521. Sum rules for points of
this kind were established by Longuet-Higgins long a
@26,27#.

III. GENERAL FORMULAS FOR THE DENSITY
OF NODAL POINTS

If we introduce the density of nodal points as

R~r !5uv~r j !ud„u~r !…d„v~r !… ~9!

we obtain

R~r !5(
j

d~r2r j !. ~10!

For later reference let us also introduce the singular func

Rv~r !5v~r !d„u~r !…d„v~r !…5(
j

s jd~r2r j !. ~11!

Next, let us define the mean density

^R~r !&5r ~12!

and the correlation function for the random density
03622
-
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G~s!5^R~r !R~r2s!&5K (
i , j

d~r2r i !d~r2r j2s!L .

~13!

Notice that becauseR(r ) is a statistically homogeneou
and isotropic random field, the mean densityr is constant
and the correlation functionG(s) depends only on the dis
tances between the points of observationr and r2s. For-
mulas~9!, ~11!, ~12! and~13! form the basis of the statistica
analysis of the nodal points distribution assuming that
functionsu(r ) andv(r ) are random functions.

The mean density defines a characteristic scale

sr5
1

Ar
, ~14!

which we will use below as the natural unit of distances
the ‘‘gas’’ of randomly distributed points, i.e., we will use th
dimensionless variable

l 5
s

sr
5Ars. ~15!

Moreover it is convenient to formulate some analytical
sults in terms of the dimensionless pair-pair correlation fu
tion with dimensionless argument.

g~ l !5
1

r2 GS l

Ar
D . ~16!

We now introduce the mean densityg(r ) around a given
point. One can show that

g~s!5
1

r
G~s!, ~17!

which will play a crucial role in the following derivation o
DFNDNP for the Berry function.

We now consider some useful relations for the statistics
the nodal points. First, consider the mean number of po
inside a circleCr with radiusr centered at some given poin
It is obvious that the mean number of points enclosed by
circle is equal to

^n~r !&52pE
0

r

g~y!ydy. ~18!

Using the dimensionless coordinate~15! one obtains

^n~ l !&52pE
0

l

g~r !rdr . ~19!

This relation takes into account that the dimensionless co
lation functiong(r ) is at the same time the dimensionle
mean density. Second, consider also the relation for the m
number of nodal points

^n~ l !&5 (
n51

`

nP~n;l !.
2-3
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Here P(n;l ) is the probability thatn neighboring points
belong to the circle. These probabilities satisfy the norm
ization condition

P~0;l !512 (
n51

`

P~n;l !. ~20!

The probabilityP(0;l ) is of great importance because
is directly related to the distribution function for nearest d
tances between a given point and its neighboring po
(DFNDNP)f min(l ). This is because the cumulative distrib
tion of the nearest distancesl min is given by

Fmin~ l !5P~ l min,l !512P~0;l !. ~21!

Therefore we may now write the following relation for th
dimensionless distribution of nearest distances

f min~ l !52
]

]l
P~0;l !. ~22!

Thus, the last formula reduces the problem of calculating
DFNDNP to that of findingP(0;l ). Below we will find
approximate expressions forP(0;l ). However, we will first
present asymptotic formulas forP(0;l ) and the DFNDNP.
We assume thatP(n;l ) is a well-behaved function. Fo
small l one may therefore replace the exact relations~19!
and ~20! with the asymptotic forms

^n~ l !&;P~1;l !, P~0;l !;12P~1;l !, l →0.

Finally, from Eqs. ~19! and ~22! and the last relation
above one obtains the following asymptotic formula for t
exact DFNDNP

f min~ l !;
]

]l
^n~ l !&52pl g~ l ! ~ l →0!. ~23!

Let us now apply these general considerations to
Berry function ~1!. First of all we will calculate the mean
densityr in Eq. ~12!. Using the definition~9! and the fact
that the variables of the homogeneous Gaussian field an
derivatives are statistically independent at the same poin
have

r5^uv~r !u&^d„u~r !…&^d„u~r !…&. ~24!

It is straightforward to show that

^d„u~r !…&^d„v~r !…&5
1

2p
, ^uvu&5

k2

2
, ~25!

wherek is modulus of wave vector of the Berry function~1!.
Therefore, substituting Eq.~25! into Eq. ~24! we obtain the
final expression for the mean density

r5
k2

4p
. ~26!

This exact relation has been derived recently also by Be
and Dennis@18#. A more general expression forr has been
derived by Halperin@25#.
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Second, consider the density correlation function~13!

G~s!5^uv~r !v~r1s!ud„u~r !…d„u~r1s!…

3d„v~r !…d„v~r1s!…&. ~27!

The calculation ofG(s) is given in the Appendix~A11! and
the dimensionless pair correlation function for arbitraryl is
plotted in Fig. 2. The general behavior reminds superficia
of the correlation functions for amorphous solids with sho
range order and distinct shell-like structures present@28#.
The correlations are, however, more long range in the pre
case. The same pair correlation function was recently
tained by Berry and Dennis@18#, although expressed in
different analytic form. The derivations are somewhat
dious as indicated by the Appendix. It is therefore reward
that there is perfect numerical agreement with Berry a
Dennis’ results@18#. Halperin @25# has given a general ex
pression for the correlation function for topological defec
Insertion of Eq.~3! in his general expression yields resu
that deviate substantially from ours and Berry and Denn
for small distances less than about the mean distance
tween the defects.

FIG. 2. The dimensionless correlation functiong nodal for the
Berry wave function~1! versus the dimensionless radiusl . The
lower frame displays the same function in the~x, y! plane~x andy
dimensionless!.
2-4
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DISTRIBUTION OF NEAREST DISTANCES BETWEEN . . . PHYSICAL REVIEW E64 036222
Using the expressions in the Appendix we can find
asymptotic expression

g~ l !;1/4 ~ l →0! ~28!

from which we obtain the asymptote for the DFNDNP~23!
at smalll

f min~ l !;
p

2
l ~ l →0!. ~29!

This exact result is useful for testing approximate analyti
solutions and numerical simulation data.

IV. THE POISSON AND BERNOULLI APPROXIMATIONS
FOR THE DFNDNP

In order to model the DFNDNP by analytic means w
may in a first attempt use the Poisson approximation. T
approach has been discussed recently also by Dennis@24#.
The Poisson approximation implies that all points aroun
given one~which is located in center! are statistically inde-
pendent, i.e., it neglects higher-order correlations. There
we have to take into account correlations only between
given point and its neighbors. These correlations can be
corporated using the mean density of pointsg around the
given point~17!. According to the Poisson law the probab
ity that no other points belong to circle with dimensionle
radiusl is

P~0,l !5exp~2^n~ l !&!5expF22pE
0

l

zg~z!dzG . ~30!

Using the relation~22!, we easily obtain the formula for th
DFNDNP in the Poissonian approximation

f min~ l !'2pl g~ l !expF22pE
0

l

zg~z!dzG . ~31!

One notes that for smalll the asymptote of the approxima
DFNDNP ~31! coincides with exact one~29!.

For the special case of uniformly distributed and co
pletely random points (g(l )51) we immediately obtain the
well known result@29,30#

f min~ l !52pl exp~2pl 2!. ~32!

For convenience we also introduce the new dimension
radius

r 5l /^l &, ~33!

which refers to mean distance between nearest nodal p
^l &. The main asymptotic for the DFNDNP~29! then reads

f ~r !;~ l !2
p

2
r 5nr . ~34!

A comparison between Eqs.~31!, ~32! and the numerically
calculated DFNDNP are given in Fig. 3. Obviously the si
plest model with (g(l )51) cannot reproduce the tru
03622
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DFNDNP for the simple reason that the nodal points are
random points. The Poisson approximated function~31! is
obviously in much better agreement with the numerical
sults although the distribution falls off too quickly at larg
separations. The agreement for smallz is more satisfactory
with n50.765, which is rather close to the value 0.68 o
tained from the direct numerical calculations. Although t
Poissonian modeling gives reasonable results we need t
beyond it for a better description of the intrinsic statistic
higher-order correlations among the nodal points as indica
by Fig. 2.

A general disadvantage of the Poissonian approach is
all nodal points are competing with each other to be nei
bors of a given point. It is clear, however, that only near
neighbors of the given point actually participate in such
competition. Therefore we consider the Bernoulli appro
mation for the nearest distances of points that takes into
count the competition between neighboring points. Simila
the Poisson approximation we again consider the circleCR of
radiusR with the center at a given pointO and assume tha
all points except the given one are statistically independ
Furthermore, let us assume that the total number of po
inside the circleCR is just equal to the mean density integr

n~R!52pE
0

R

g~ l !l dl . ~35!

With these conditions the distribution of each randomly
cated point belonging toCR point is exactly equal to

FIG. 3. DFNDNP versus dimensionless distancer 5l /^l & for
~a! random points~32! ~dashed curve! and ~b! for the Poissonian
approximation~31! ~solid curve! with ^l &50.657. The straight
dash-dot line is the corresponding asymptote~34!. The histogram
shows the distribution as obtained from direct numerical calcu
tions of the positions of the nodal points Re(c(xj ,yj))
5Im(c(xj ,yj))50 for the Berry function~1!. In these simulations
we have generated the nodal points in a large number of sam
typically of size (60360) and withk5A2p. The number of ran-
dom plane waves included has ranged from 20 to 80. In the
ample shown we have included 40 plane waves and averaged
200 samples. Except for statistical variations the same results
obtained also for other choices of the number of plane wav
sample size, and value ofk.
2-5
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f ~ l !5
g~ l !

n~R!
. ~36!

Next, let us consider another circleCl with the center at the
same originO and radiusl ,R. Obviously the probability to
find a point in this smaller circle is equal to

p~ l !5E
Cl

f ~ l !d2l 5
^n~ l !&
n~R!

, ~37!

where

^n~ l !&52pE
0

l

g~r !rdr . ~38!

In the same way we have that the probability that a po
does not fall into the circleCl is equal to

q~ l !512p~ l !512
^n~ l !&
n~R!

. ~39!

Since points are statistically independent the probability
all points to be outside the circleCl equals

P~0;l !5S 12
^n~ l !&
n~R! D n~R!

. ~40!

From Eqs.~21!, ~22!, and~35! it follows directly that

f min~ l !5
]

]l
P~0;l !52pl g~ l !S 12

^n~ l !&
n~R! D n~R!21

.

~41!

To obtain the DFNDNP analytically we make the followin
approaches within the Bernoulli approximation.

~i! In formula ~41! we replace the number of pointsn(R)
by the mean number of points^n(R)& Eq. ~38!.

~ii ! We choose the radiusR in such a way that inside th
circle CR there are a certain number of points that comp
with each other to be the nearest neighbor toO. The mini-
mum number of points in the circle is obviously three if w
also include the central point.

In the following we will simply use this value. As a resu
we obtain, instead of formula~A10!, the following expres-
sion:

f min~ l !>2pl g~ l !S 12
^~ l !&

3 D 2

. ~42!

It is easy to verify that this approximate distribution is no
malized and has the same asymptote as the exact distrib
function ~29!.

In Fig. 4 the analytic results in Eq.~42! are compared
with the numerical distribution obtained directly from th
Berry function. The Bernoulli approach is evidently mo
powerful than our previous attempt in predicting t
DFNDNP~31!. The reason would be that we now catch so
of the higher-order correlations.

The distribution~42! has the same linear behavior at sm
03622
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l as in previous expressions~29! and ~34!. The coefficient
n50.678 that is quite close to numerics~0.68!.

V. THE MEAN CHIRAL DENSITIES
AND CORRELATION FUNCTIONS

To gain more detailed statistics of nodal points we co
sider the statistical characteristics of chiral-dependent no
points density similar to Eq.~11!

Rs~r !5(
j s

d~r2r j s
!, ~43!

where j s numerates positions of vortices with chiralitys5
61. Formulas~10! and ~11! can be written via the chira
densities~43!

Rv~r !5(
s

Rs , Rv5(
s

sRs . ~44!

Similar to Eq.~12! we introduce the chiral mean densities

^Rs~r !&5rs5r/2. ~45!

The last equality follows from the mean spatial isotropy
the Berry function~1!, which implies that in mean there is n
preferred chirality of nodal points.

Moreover we introduce the auxiliary chiral correlatio
function

Gv~s!5^Rv~r !Rv~r2s!&

5K (
i , j

s id~r2r i !s jd~r2r j2s!L ~46!

and correlation functions of the chiral mean densities~43!

FIG. 4. Plots of the DFNDNP for the Berry function~1! versus
dimensionless distance~33! with ^l &50.658. Solid curve is the
Bernoulli approximated distribution~42!. The histogram is the sam
as in Fig. 3.
2-6
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Gs,s8~s!5^Rs~r !Rs8~r2s!&

5K (
i s j s8

d~r2r i s
!d~r2r j s8

2s!L . ~47!

From relations~10!, ~11!, ~13!, ~46!, and~47! it follows that

Gss8~s!5 1
4 @G~s!1ss8Gv~s!#. ~48!

Consider a nodal point with chiralitys. Similar to Eq.
~17! we define the mean chiral densities around this poin

gss8~s!5
2

r
Gss8~s!. ~49!

Then from Eqs.~48! and ~49! we obtain

gss8~s!5 1
2 @g~s!1ss8gv~s!#. ~50!

For subscripts~s, s! in Eq. ~50! the given point and its
neighbors have the same vorticity, while~s, 2s! refers to
the opposite case. Therefore a knowledge of the correla
functions G(s) and Gv(s) that are calculated in Appendi
@formulas~A6! and~A24!# is enough to find the chiral mea
densities and correlation functions. These chirali
dependent correlation functions are shown graphically
Fig. 5 in the scaled form

gss8~ l !5
gss8~ l /Ar!

r
. ~51!

Also in this case we find good agreement with Berry a
Dennis@18#. Above we alluded to the general shape of p
correlation functions for amorphous materials. With the d
pendence ons included we may obviously carry this naiv
picture a bit further to talk in a loose way about the nod
points as a two-component system in which ‘‘objects’’ wi
the same vorticities~topological charges! repel each other. At
the same time ‘‘objects’’ with opposites may approach each
other closely. Hence we may think about the system of no
points as a thin slab of a fictitious binary amorphous solid

FIG. 5. Plots of the dimensionless correlation functio
gs,s(l )5g11 , gs,2s(l )5g12 , andg(l ) as defined in Eq.~51!.
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salt @28#. Of course, this analogy should not be pushed
far.

In order to find the distributions functionsf ss8(l ) for
nearest distances between nodal points with chiralitiess and
s8 we insertgss8(l ) into Eq. ~31!. For the Bernoulli ap-
proximation one also has to label the mean number of po
~38! as

^ns,s8~ l !&52pE
0

l

gs,s8~z!zdz, ~52!

which is to be inserted in Eq.~41!. We have found above
however, that already the Poisson approximation catches
gross features of the nearest neighbor distribution. For
reason and because the Bernoulli approximation is very
dious we will restrict ourselves to the Poisson approximat
at this stage. Thus we consider

f ss8~ l !52pl gss8~ l !expF22pE
0

l

zgss8~z!dzG .
~53!

Using Eqs.~50!, ~52!, and~53! one can show that the asymp
tote of f s,2s(l ) coincides with the asymptote for th
DFNDNP ~29!. For f s,s(l ), however, we obtain the quite
different form

f s,s8~ l !5
5p

81
A10pl 4'1.09l 4. ~54!

The s-dependent DFNDNP~53! for ~s, s! and ~s, 2s!
are compared with numerical results in Figs. 6 and 7. T
difference between the two combinations~s, s! and~s, 2s!
is very clear. In the first case there is a strong repuls
between the nearest neighbors, a result that is to be expe
from Fig. 5. The distribution is, however, of a very simp
form. Essentially it corresponds a symmetric ring~first shell!

FIG. 6. Distribution functions of nearest distances betwe
nodal points with the same chiralitys versus dimensionless dis
tance~33! with ^l &50.998. Solid line is calculated from functio
~53!. The histogram refers to numerical work as described in Fig
For this case we obtain the same value for^l &.
2-7
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around the given point. Except for the low tail regions it
well approximated by a Gaussian, i.e., there is basicall
random distribution within the ‘‘shell.’’

In the second case~s, 2s!, the distribution shows how
the nodal points are allowed to come arbitrarily close to e
other and how the shell structure is less pronounced.
small separationsf s,2s is obviously the dominant term in
the total distributionf. Finally we note that̂ l &.0.7 for
opposite chiralities~topological charges! and ^l &.1 for
equal chiralities, i.e., there are ‘‘inner’’ and ‘‘outer shells’’ fo
opposite and equal vorticities, respectively. As shown
Figs. 6 and 7 the Poisson approximation reproduces the
merical results in at least a qualitatively correct way.

VI. SUMMARY

We have considered the distribution among nodal po
associated with chaotic wave dynamics. The nodal points
of special interest as they are associated with vortical fl
and chiralitys that is either11 or 21. In particular we have
focused on the distribution of nearest separations among
nodal points. The reason is that distributions of this kind m
carry information about chaotic dynamics as conjectured
@10#. We have introduced analytic approaches based on c
plex Gaussian random functions with the known correlat
function J0(ks). Two cases have been considered, nam
the Poisson and Bernoulli approximations.

As a supplement to the analytic approaches we have
formed numerical calculations to locate the nodal points
their vorticity using the Berry chaotic wave function in E
~1!. The numerical distributions computed in this way are,
principle, the correct ones and are therefore useful for tes
the accuracy of the analytic modeling. We thus find that
ready the Poisson approximation gives a good qualita
understanding of the distribution of nearest neighbor sep
tions. Some higher-order correlations are, however, not
counted for. For this reason we have also considered
Bernoulli approximation that picks up some of these fe

FIG. 7. Same as in Fig. 6 but for nodal points with oppos
chiralitiess; ^l &50.696. The histogram refers to numerical wo
as described in Fig. 2. For this case we find^l &50.726.
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tures. On the other hand the behavior at large distances n
further work.

When the distribution of nearest neighbor distances
separated into distances between nodal points with equal
opposite chiralities one obtains a picture that superficia
reminds of binary amorphous matter. There are distinct ‘‘
ner’’ and ‘‘outer shells’’ associated with opposite and equ
chiralities, respectively. While points with opposite chira
ties may get close to each other there is a strong repul
among pairs with equal chirality. The reason is, loos
speaking, that nodal points with equal chirality have to a
pear in conjunction with ‘‘antivortices’’ or saddle points
These ‘‘antivortices’’ act as local ‘‘beam splitters’’ and a
necessary for two nearby vortices to spin the same w
These interesting features should be pursued further bec
the distributions among the different phase singularities
obviously interrelated. Effectively we may then arrive at
description reminding of a ternary amorpous materials.

The distributions discussed here relate to generic feat
of a wave-chaotic state. For this reason it would be of int
est if they could be verified experimentally. Using, e.g., m
crowave cavities this appears to be a real possibility@17#.
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APPENDIX: CORRELATION FUNCTIONS FOR
THE NODAL POINTS

In this appendix we outline the somewhat tedious deri
tion of the various correlation functions. Consider the cor
lation function of the random density~13!

G~s!5

^uv~r !v~r1s!ud„u~r !…d„u~r1s!…d„v~r !…d„v~r1s!…&.

~A1!

Sinceu andv are statistically independent random fields it
sufficient to consider only the statistical properties of fieldu.
First of all, note that the joint distribution of the values of th
scalar Gaussian random field at the pointsr andr1s has the
form

W~u,us!5^d„u~r !2u…d„u~r1s!2us…&

5
1

2pA12a2~s!
expF2

u21us
222a~s!uus

2@12a2~s!#
G .
~A2!

Furthermore, we will need the reciprocal statistical propert
2-8



th

p

gh

s

les

bu-

l

en-

s

dis-

DISTRIBUTION OF NEAREST DISTANCES BETWEEN . . . PHYSICAL REVIEW E64 036222
of Gaussian scalar fieldu and its gradient“u. They are
completely defined by the correlation vector

e~s!5^u~r1s!“u~r !& ~A3!

and the correlation tensorbi j (s), i , j 51,2 of vector field“u.
It is convenient to project this vector and tensor onto

local coordinate system related to the vectors through the
longitudinal components

ui~r !, ui~r1s!

and the transverse ones

u'~r !, u'~r1s!.

These components have the remarkable correlation pro
ties

^u~r1s!ui~r !&5e~s!, ^u~r1s!u'~r !&50. ~A4!

The tensor correlation function becomes diagonal

^ui~r !ui~r1s!&5bi~s! ^u'~r !u'~r1s!&5b'~s!, ~A5!

^ui~r !u'~r1s!&50.

Here we introduce the following notations:

bi~s!52
d2a~s!

ds2 , b'~s!52
1

s

da~s!

ds
,

e~s!52
da~s!

ds
, bi~0!5b'~0!5

1

2
k25b.

We may then write the density correlation function~A1! as

G~s!5
1

4p2@12a2~s!#
^uuiv'2v iu'uuuisv's2v isu'su&.

~A6!

For brevity we have written here the dependence ons as an
index. The following averages are performed for the ei
manifold Gaussian fields

$ui~r !,ui~r1s!%, $v i~r !,v i~r1s!%,

$u'~r !,u'~r1s!%, $v'~r !,v'~r1s!%. ~A7!

Here each pair of variables has the correlation propertie

^ui
2&5^v i

2&5bD~s!,

^u'
2 &5^v'

2 &5b,

^uiuis&5^v iv is&5c~s!,

^u'u's&5^v'v's&5b'~s!, ~A8!

where

D~s!5
b@12a2~s!#2e2~s!

b@12a2~s!#
,

03622
e

er-

t

c~s!5
bi~s!@12a2~s!#2a~s!e2~s!

b@12a2~s!#
. ~A9!

It is convenient to transform to normalized random variab

ũi5
ui

AbD~s!
, ṽ i5

v i

AbD~s!
, ũ'5

u'

Ab
, ṽ'5

v'

Ab
.

With the correlation coefficients

a5
bi~s!@12a2~s!#2a~s!e2~s!

b@12a2~s!#2e2~s!
, b5

b'~s!

b
~A10!

expression~A6! now takes the form

G~s!5r2
D~s!

12a2~s!
L~a,b!, ~A11!

where

L~a,b!5^uũiṽ'2 ṽ iũ'uuũisṽ's2 ṽ isũ'su& ~A12!

and the averaging is performed with respect to the distri
tions

wi~u,us!5
1

2pA12a2
expF2

u21us
222auus

2~12a2!
G

w'~u,us!5
1

2pA12b2
expF2

u21us
222buus

2~12b2!
G .

Here distribution wi describes the statistics of ‘‘paralle
pairs’’ $ui ,uis% and $v i ,v is% while w' describes properties
of ‘‘perpendicular’’ ones.

It remains to calculate the function~A12! that will be
done in two steps. First, we average over the statistical
semble of parallel components$ui ,uis ,v i ,uis% at all given
perpendicular variables to obtain

L'~a,b!5^ullsu&' , ~A13!

where notation̂¯&' means that all perpendicular variable
are considered as fixed, and that

l5ũiṽ'2ũiṽ' , ls5ũisṽ's2 ṽ isũ's

are two Gaussian variables with zero mean values with
persions

^l'
2 &5ũ'

2 1 ṽ'
2 , ^l's

2 &5ũ's
2 1 ṽ's

2

and correlation

^lls&'5a~ ũ'ũ's1 ṽ'ṽ's!.

Let us normalize variablesl andls by the relations

z5
l

Au'
2 1v'

2
, zs5

ls

Au's
2 1v's

2
,

2-9
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which transform the function~A13! as

L'~a,b!5A~u'
2 1v'

2 !~u's
2 1v's

2 !^uzzsu&' , ~A14!

wherez and zs are Gaussian variables with unit dispersi
and the correlation coefficient as

g5^zzs&'5a
u'u's1v'v's

A~u'
2 1v'

2 !~u's
2 1v's

2 !
.

Using the properties of Gaussian random variables
can derive, after some algebra, the following equation:

d2^uz1z2u&'

dg2 54^d~z1!d~z2!&'5
2

pA12g2
. ~A15!

Taking into account the initial conditions

^uz1z2u&'ug505
2

p
,

d^uz1z2u&'

dg
ug5050,

we obtain from Eq.~A15!

F~g!5^uzzsu&'5
2

p
@A12g21g arcsing#. ~A16!

Substituting Eq.~A16! in Eq. ~A14! and averaging over the
remaining four perpendicular random variables we obtain

L~a,b!5^L'~a,b!&5^A~u'
2 1v'

2 !~u's
2 1v's

2 !F~g!&.
~A17!

The angular brackets on the right hand of this equation im
an averaging over the' variables with the following joint
distribution

w~u,us,v,vs!5
1

4p2~12b2!

3expF2
u21v21us

21vs
222b~uus1vvs!

2~12b2!
G .

In order to perform integration over four' variables
$u,us ,v,vs% we use the polar system of coordinates

u'5j cosw, v'5j sinw u's5n cosc, v's5n sinc,

which gives, instead of Eq.~A17!,

L~a,b!5^jhF~a cosm!& ~m5w2c!. ~A18!

Here the three random variables$j, h, m% are distributed as
03622
e

ly

w~j,h,m!5
jh

2p~12b2!
expF2

j21h222bjh cosm

2~12b2! G ,
j,h.0, mP@2p,p#.

To exclude the random variablesj andh we rewrite relation
~A18! as

L~a,b!5
1

2p E
2p

p

F~a cosm!A~m,b!dm, ~A19!

where

A~m,b!5
1

12b2 3E
0

`

djE
0

`

dhj2h2

3expF2
j21h222bjh cosm

2~12b2! G . ~A20!

If we use the new variables of integrationp, d defined
through

j5p cosd, h5p sind,

the integral~A20! transforms into the form

A~m,b!5 1
8 ~12b2!2E

0

p

du sin2 uE
0

`

dpp5 exp@2 1
2 p2~1

2b cosm sinu!#

with u52d. After integration overp we obtain

A~m,b!5~12b2!2Q~b cosm!. ~A21!

Q~z!5
3z

~12z2!2 1
112z2

~12z2!5/2FarctanS z

A12z2D 1
p

2 G .

~A22!

Substituting Eq.~A21! in Eq. ~A19! we finally obtain

L~a,b!5
~12b2!2

2p E
2p

p

F~a cosm!Q~b cosm!dm,

~A23!

where the functionF(g) is defined by the equality~A16! and
the functionQ(g) is given by Eq.~A22!.

For the s-dependent density correlation functions it
easy to show, using the Gaussian properties of the fieldu
andv, that the correlation function fors-dependent random
density~11! has the form

Gv~s!5^Rv~r !Rv~r1s!&5r2
2D~s!

12a2~s!
a~s!b~s!. ~A24!
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