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Distribution of nearest distances between nodal points for the Berry function in two dimensions
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According to Berry a wave-chaotic state may be viewed as a superposition of monochromatic plane waves
with random phases and amplitudes. Here we consider the distribution of nodal points associated with this
state. Using the property that both the real and imaginary parts of the wave function are random Gaussian fields
we analyze the correlation function and densities of the nodal points. Using two appréhehPsisson and
Bernoulli) we derive the distribution of nearest neighbor separations. Furthermore the distribution functions for
nodal points with specific chirality are found. Comparison is made with results from numerical calculations for
the Berry wave function.
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I. INTRODUCTION DFNDNP serves as a signature of quantum chaos is the co-
incidence with the corresponding distribution function for

The nature of the quantum eigenstates in billiards, whicithe Berry statd10]. According to Berry’s conjecture a cha-
are classically chaotic, has been subject to much theoreticgfic state can be viewed as a superposition of a large number
and experimental work. The seminal studies by McDonaldPf interfering monochromatic de Broglie wavgks]
and Kaufmanri1] of the morphology of the two-dimensional
(2D) eigenstates in a closed Bunimovich stadium have re-
vealed characteristic complex patterns of disordered, undi- W(r)=2 ajexplik;-r+¢;), 1)
rectional and noncrossing nodal lines. The spatial behavior !
of the eigenstates of chaotic billiards is still of considerable
theoretical and experimental interest. For recent theory seyherea; and ¢; are independent random variables dqd
e.g., Refs[2-5], and references cited therein; examples ofare randomly oriented wave vectors of equal length. The
measurements on electron billiards and wave-dynamical anderry wave function may be regarded as a standard measure
logs are found in Ref[6]. Other well known signatures of of quantum chaos. In fact, there are beautiful experimental
guantum chaos in closed billiards are related to the distribuebservations of Berry waves on the surface of water in an
tion of nearest level separations and spectral rigidity. agitated ripple tank with stadium-shaped wa§].

For open billiards, i.e., billiards with attached leads, the So far all our conclusions about DFNDNP rest on numeri-
picture is less clear. One may use the poles of the scatteringal experiment$10]. The Berry state is, however, available
matrix that are related to the decay time from a billiardin a mathematical form that invites to analytic approaches. In
[7-9]. When transport through a billiard takes place one mayhe present work we will therefore model the DFNDN{IP)
as an alternative focus on the fact that the wave fungfiam  and its main asymptotic behavior analytically using the fun-
a scattering state with both real and imaginary parts. If wedamental property that the Berry functidf) is Gaussian
restrict ourselves to 2D systems, as we will do throughoutandom field[18]. We will also show that there are other
this work, this means that there are two separate sets of nodglpes of distribution functions that are related to the chirality
lines at which either Re&/] or Im[¢] vanish. The intersec- of the nodal points. Each nodal point is a topological singu-
tions of the two sets at which Rg]=Im[]=0 define the larity of the wave functiof12,13,15-18 As a result there is
nodal points. Numerical simulations have shown that thea vortex centered around each nodal point with definite
shape of distribution function for the nearest distances bechirality depending on whether the current flows clockwise
tween these nodal poin(®FNDNP) depends on whether the or counterclockwise as indicated in Fig. 1. We therefore label
billiard is nominally either regular or irreguldrl0]. For  each nodal point by=*1. In analogy withf(r) we there-
transmission through chaotic billiards the DFNDNP appeardore introduce the distribution functiorfs, ,,(r) for nearest
to have a general characteristic form, while for regular bil-neighbor separations between points with chiralivesnd
liards like, for example, rectangular ones there are specifie’. Analytic expressions for these distributions will be de-
features of the DFNDNP that depend on the particular geomrved below and compared with numerical computations us-
etry, at least as long as only a few channels are open. Thugg the Berry wave function. As will be pointed out in the
besides the vivid physical role played by the nodal points asext our results partly overlap with recent work by Berry and
centers of vortical motiofil1-17, their statistical distribu- Dennis[18] (the pair correlation functiong, ,» and the re-
tion may tell if chaos is present or not. The present worklation between the mean density and wave nunipeMost
relates to quantum transport in open electron billiards. Theecently Dennis has also considered the distribution of near-
issue of wave function singularities is, however, part a muclest distances among nodal points using the Poisson model
broader contexf18-22. [24]. The statistical mechanics of topological defects have

An appealing argument that favors our view thatalso been discussed by HalpefRE].
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FIG. 1. (Color) Typical pattern
of nodal lines Iniy(x,y)]=0 and
R y(x,y)]=0 for the Berry func-
tion in the(x, y) plane. Nodal lines
in each set do not cross. Points at
which the two sets intersect are
the nodal points around which
there is vortical flow in either
clockwise or counterclockwise di-
rection.

-

In the following sections we will derive expressions for y(r),u(r) are two real random fields. We assume thét)
the distributions of nearest neighbor separations betweegnd v(r) are mutually statistically independent, homoge-
points with chiralitiess ando’. For this purpose we will also  neous and isotropic Gaussian random fields with zero mean.

have to consider the pair correlation functians, . We will The correlation function has the well known form
make use of two different analytic approaches based on the
Poisson and Bernoulli models. In addition we will also cal- a(s)=(u(ru(r+s))=(w(rv(r+s))=Jo(ks), (3

culate the distributions by direct numerical methods, i.e., we ) ) )

locate the nodal points by simply computing the nodal linesvheres=|s andk=|k|. This result is a direct consequence
for Im(¥) and Re®) and how they cross. In principle the of the Berry f_unctlon(l). To find the _stausncal propert_|es of

numerical results represent the correct distributions and givel§!® nodal points; we have to consider the intersections of

us a way to test the accuracy of the different analyticthe zero level curvegnodal lines of the fieldsu(r) and
approaches. v(r), i.e., the roots of the two equations:

U(rj):l)(rj):o (rjERZ).
II. DEFINITION OF VARIABLES
As mentioned in the Introduction the nodal points are the

centers of vortices. The associated probability curdény is
proportional to

Consider the Berry functioil) as the complex random
function

P(r)y=u(r)+uo(r), 2 JO) =R *(NiVy(r)]=v(r)Vu(r)—u(r)Vo(r). (4
wherer is the 2D position with Cartesian coordinatesand  In the present work we consider the vorticity field
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=V XxJ.
w=VxJ ® G(s)=(R(r)R(r—s)>=<2 5(r—ri)5(r—rj—s)>.
In our two-dimensional case it is normal to the y) plane, = (13)
i.e., o(r)=w(r)h, wheref, is the normal unit vector. Sub-
stituting Eq.(4) into Eq. (5) we have Notice that becaus®(r) is a statistically homogeneous
and isotropic random field, the mean densitys constant

o(r)=[Vu(r)xXVo(r)]. (6)  and the correlation functio(s) depends only on the dis-

) tances between the points of observationandr—s. For-
At the nodal point; mulas(9), (11), (12) and(13) form the basis of the statistical

analysis of the nodal points distribution assuming that the
functionsu(r) andv(r) are random functions.
The mean density defines a characteristic scale

wj=w(rj)

is the angular velocity of the current in the very vicinity of

ri. In the following we will call w; the vorticity of the jth

nodal point. S =—, (14)
The nodal points are topological singularities of the com- g \/;

plex function(2) because they are responsible for the vorti-

ces. This means that when the following loop integral enWhich we will use below as the natural unit of distances in
closes a nodal point one hgkl,12,15-1F the “gas” of randomly distributed points, i.e., we will use the

dimensionless variable

ﬁvodrzizw, (7 /= Si:fps_ (15)
P

where ¢ is the phase of the wave function. In what follows

we use the definition Moreover it is convenient to formulate some analytical re-

sults in terms of the dimensionless pair-pair correlation func-
tion with dimensionless argument.
Tj :|_ (8)

1
g(/)= ?G (16)

for which o takes the values 1 for clockwise and counter- \//—) '

clockwise vorticitiesw; , respectively. Therefore E¢8) de- ) ) )

; ; i i We now introduce the mean densigr) around a given
fines the sign of the vorticity of the nodal points. Below we

will refer to o as chirality. Alternatively it is named topologi- Peint. One can show that

cal chargg 18] or winding numbef25]. There are as many

points with =1 as witho=—1. Sum rules for points of y(s)= EG(S), (17
this kind were established by Longuet-Higgins long ago p
[26,27.

which will play a crucial role in the following derivation of
DFNDNP for the Berry function.

IIl. GENERAL FORMULAS FOR THE DENSITY We now consider some useful relations for the statistics of
OF NODAL POINTS the nodal points. First, consider the mean number of points
If we introduce the density of nodal points as in;ide a.circle(:r with radiusr centered at some given point.
It is obvious that the mean number of points enclosed by the
R(r)=|eo(r))]8u(r))s@(r)) (9  circle is equal to
. r
we obtain <n(r)>=277f y(y)ydy. (18
0
R(r)=§ o(r—rj). (100 uUsing the dimensionless coordindfks) one obtains
/
For later reference let us also introduce the singular function (n(/)>:277f g(r)rdr. (19
0

R,(r)=w(r)s(u(r))s(r))= 2 o;é(r—rj). (11)  This relation takes into account that the dimensionless corre-
! lation functiong(r) is at the same time the dimensionless
mean density. Second, consider also the relation for the mean

Next, let us define the mean density number of nodal points
(R(r))=p 12

n/))= nP(n;/).
and the correlation function for the random density {n()) nzl (ni2)
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Here P(n;/) is the probability thatn neighboring points A
belong to the circle. These probabilities satisfy the normal-

ization condition 2 /\ /\ N N
Ny Ny S 08
P(0;/)=1- 2, P(n;/). 20 &
n=t k= 0.6
The probabilityP(0;/) is of great importance because it 0.4

is directly related to the distribution function for nearest dis-
tances between a given point and its neighboring points
(DENDNP)f 1in(7). This is because the cumulative distribu-

tion of the nearest distances,,, is given by

Fin(/)=P(/ min</)=1—P(0;/).

Therefore we may now write the following relation for the
dimensionless distribution of nearest distances

J
fmin(/): - yP(O,/)

Thus, the last formula reduces the problem of calculating the
DFNDNP to that of findingP(0;/). Below we will find Y
approximate expressions f&(0;/). However, we will first
present asymptotic formulas f&(0;/) and the DFNDNP.

We assume thaP(n;/) is a well-behaved function. For
small ~ one may therefore replace the exact relatich®

and (20) with the asymptotic forms

(n(/))y~P(1;/), P(0;/)~1-P(1;/), /—0.
Finally, from Egs.(19) and (22) and the last relation

(21)

(22

above one obtains the following asymptotic formula for the X

exact DFNDNP

FIG. 2. The dimensionless correlation functigmodal for the
Berry wave function(1) versus the dimensionless radids The

fin(2) ~ %(n(/’)):Zw/g(/) (/—0). (23 lower frame displays the same function in tfx¢ y) plane(x andy

Let us now apply these general considerations to the
Berry function (1). First of all we will calculate the mean

dimensionless

Second, consider the density correlation functib8)

density p in Eqg. (12). Using the definition(9) and the fact G(s)={(|o(r)o(r+s)|8(u(r))su(r+s))

that the variables of the homogeneous Gaussian field and its

derivatives are statistically independent at the same point we X 8w (r))s(r+s))). (27
have

p={la(n)[)(8U(r)){su(r))).
It is straightforward to show that

1 k2
(a(u(r)))(s(v(r)))= > (lol)= >

wherek is modulus of wave vector of the Berry functi¢b).

The calculation ofG(s) is given in the AppendixAl1l) and
(24)  the dimensionless pair correlation function for arbitrarys
plotted in Fig. 2. The general behavior reminds superficially
of the correlation functions for amorphous solids with short-
range order and distinct shell-like structures pred@.
(25 The correlations are, however, more long range in the present
case. The same pair correlation function was recently ob-
tained by Berry and Dennigl8], although expressed in a

Therefore, substituting Eq25) into Eq. (24) we obtain the different analytic form. The derivations are somewhat te-

final expression for the mean density
k2
P=an

dious as indicated by the Appendix. It is therefore rewarding
that there is perfect numerical agreement with Berry and
Dennis’ resultg 18]. Halperin[25] has given a general ex-
(26) pression for the correlation function for topological defects.
Insertion of Eq.(3) in his general expression yields results

This exact relation has been derived recently also by Berryhat deviate substantially from ours and Berry and Dennis’
and Dennig18]. A more general expression fprhas been for small distances less than about the mean distance be-

derived by Halperir25].

tween the defects.
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1.5

Using the expressions in the Appendix we can find the

asymptotic expression
g(/)~14 (/—0) (28

from which we obtain the asymptote for the DFNDNEB)
at small/

fir)

a
fin(2)~ 5/ (/—0). (29
05
This exact result is useful for testing approximate analytical

solutions and numerical simulation data.

IV. THE POISSON AND BERNOULLI APPROXIMATIONS
FOR THE DFNDNP

0.0

1.0
r

0.0 05 2.0

In order to model the DFNDNP by analytic means we
may in a first attempt use the Poisson approximation. Thi§a)
approach has been discussed recently also by D¢adis

FIG. 3. DFNDNP versus dimensionless distamee/ /(") for
random pointy32) (dashed curveand (b) for the Poissonian

; RSO ; approximation(31) (solid curvg with (/)=0.657. The straight
The Poisson approximation implies that all points around gsh-dot line is the corresponding asympté@é). The histogram

given one(which is located in centgrare statistically inde-  gpows the distribution as obtained from direct numerical calcula-
pendent, i.e., it neglects higher-order correlations. Thereforgons of the positions of the nodal points R .Y)

we have to take into account correlations only between th(=z|m(¢,(xj ¥;))=0 for the Berry function(1). In these simulations
given point and its neighbors. These correlations can be inye have generated the nodal points in a large number of samples,
corporated using the mean density of pointsaround the typically of size (60<60) and withk=\27. The number of ran-
given point(17). According to the Poisson law the probabil- dom plane waves included has ranged from 20 to 80. In the ex-
ity that no other points belong to circle with dimensionlessample shown we have included 40 plane waves and averaged over

radius/ is

P(O,/)=exp(—(n(/)))=exr{—ijo/zg(z)dz . (30

Using the relation22), we easily obtain the formula for the
DFNDNP in the Poissonian approximation

fmm(/”)~27-r/g(/)exp{ —2wf/zg(z)dz . (3)
0

One notes that for small the asymptote of the approximate
DFNDNP (31) coincides with exact on&9).

For the special case of uniformly distributed and com-
pletely random pointsd(/) =1) we immediately obtain the
well known resulf 29,30

fmin(Z) =27/ exp(— 7/ ?). (32

200 samples. Except for statistical variations the same results are
obtained also for other choices of the number of plane waves,
sample size, and value &f

DFENDNP for the simple reason that the nodal points are not
random points. The Poisson approximated funciti®h) is
obviously in much better agreement with the numerical re-
sults although the distribution falls off too quickly at large
separations. The agreement for snmis more satisfactory
with v=0.765, which is rather close to the value 0.68 ob-
tained from the direct numerical calculations. Although the
Poissonian modeling gives reasonable results we need to go
beyond it for a better description of the intrinsic statistical,
higher-order correlations among the nodal points as indicated
by Fig. 2.

A general disadvantage of the Poissonian approach is that
all nodal points are competing with each other to be neigh-
bors of a given point. It is clear, however, that only nearest
neighbors of the given point actually participate in such a

For convenience we also introduce the new dimensionlessompetition. Therefore we consider the Bernoulli approxi-

radius

r=/,1/), (33
which refers to mean distance between nearest nodal poi
(/). The main asymptotic for the DFNDNR9) then reads

f(r)~(/)zgr=vr. (34)

A comparison between Eq§31), (32) and the numerically
calculated DFNDNP are given in Fig. 3. Obviously the sim-
plest model with §(/)=1) cannot reproduce the true

n

mation for the nearest distances of points that takes into ac-
count the competition between neighboring points. Similar to
the Poisson approximation we again consider the c@glef
radiusR with the center at a given poif® and assume that

5 points except the given one are statistically independent.
Furthermore, let us assume that the total number of points
inside the circleCy, is just equal to the mean density integral

R )
n(R):27rfo g(/)/d/. (35

With these conditions the distribution of each randomly lo-
cated point belonging t65 point is exactly equal to
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_9(”)

(=R

(36)

Next, let us consider another cirale with the center at the
same origin® and radiusg”<R. Obviously the probability to
find a point in this smaller circle is equal to

,‘ o, ()
A NA2
p(/) f@f(/)d/ e 37
where
/
(n(/)>=27rf g(r)rdr. (38)
0

In the same way we have that the probability that a point
does not fall into the circl€, is equal to

PHYSICAL REVIEW B4 036222

fir)

05

0.0

1.0
r

0.0 05 2.0

FIG. 4. Plots of the DFNDNP for the Berry functidft) versus

dimensionless distancg3) with (/)=0.658. Solid curve is the

()
n(R) °

q(/)=1-p(/)=1 (39

Bernoulli approximated distributio@2). The histogram is the same
as in Fig. 3.

Since points are statistically independent the probability for,” as in previous expressiori89) and (34). The coefficient

all points to be outside the circlg, equals

i)

G
From Egs.(21), (22), and(35) it follows directly that

(n(©))
n(R)

P(O;/)=(l (40

P n(R)—1
fmin(/)=(9—/P(0;/’)=27T/9(/)(1— )

(41)
To obtain the DFNDNP analytically we make the following
approaches within the Bernoulli approximation.

(i) In formula (41) we replace the number of pointgR)
by the mean number of poin{s(R)) Eq. (38).

v=0.678 that is quite close to numeri(3.69.

V. THE MEAN CHIRAL DENSITIES
AND CORRELATION FUNCTIONS

To gain more detailed statistics of nodal points we con-

sider the statistical characteristics of chiral-dependent nodal
points density similar to Eq11)

Rg(r)=j2 S(r—r ), (43)

wherej, numerates positions of vortices with chirality=
+1. Formulas(10) and (11) can be written via the chiral

(i) We choose the radiug in such a way that inside the densities(43)

circle Cy there are a certain number of points that compete

with each other to be the nearest neighbotoThe mini-
mum number of points in the circle is obviously three if we
also include the central point.

In the following we will simply use this value. As a result
we obtain, instead of formul@A10), the following expres-
sion:

) 2

()
3

fmin(/)EZW/g(/)( 1- (42

2 oR,.

o

R,(N=2 Ry, R, (44)

Similar to Eq.(12) we introduce the chiral mean densities

(Ry(r))=p,=pl2. (45)

The last equality follows from the mean spatial isotropy of
the Berry function(1), which implies that in mean there is no

It is easy to verify that this approximate distribution is nor- Preferred chirality of nodal points. _ _
malized and has the same asymptote as the exact distributi?n Moreover we introduce the auxiliary chiral correlation

function (29).

In Fig. 4 the analytic results in Eq42) are compared
with the numerical distribution obtained directly from the
Berry function. The Bernoulli approach is evidently more
powerful than our previous attempt in predicting the
DFNDNP(31). The reason would be that we now catch some
of the higher-order correlations.

unction

G, (8)=(Ry(NR,(r=9))

=( X ad(r—r)a;8(r—r;—9)
|

(46)

The distribution(42) has the same linear behavior at small and correlation functions of the chiral mean densité3
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3.0
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1.2+

20

08
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027
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FIG. 5. Plots of the dimensionless correlation functions ,
9o,0(/) =911, Yo, o(/)=0, _, andg() as defined in Eq51). *
FIG. 6. Distribution functions of nearest distances between
Gy (S)=(Ry(N) Ry (r—9)) nodal points with the same chirality versus dimensionless dis-

tance(33) with (#)=0.998. Solid line is calculated from function
_ S(r—r )o(r—r. —9)\. 4 (53). The histogram refers to numerical work as described in Fig. 2.
< IZ, ( 1) O = T, )> (“47) For this case we obtain the same value (6}.

oo

From relationg(10), (11), (13), (46), and(47) it follows that ?alt [28]. Of course, this analogy should not be pushed too
ar.
G, (S)=1[G(S)+oa'G,(s)]. (48) In order to find the distributions functionf,, (/) for
77 Y nearest distances between nodal points with chiralitiesd

!

Consider a nodal point with chirality. Similar to Eq. ¢ We insertg,,(/) into Eq. (31). For the Bernoulli ap-

(17) we define the mean chiral densities around this point {aro)ximation one also has to label the mean number of points
38) as

2
= — ’ . 4
70’0’(5) p G(r(r (S) (49) <n0’0_,(/)>:277fo go_‘o_,(z)zdzi (52)

Then from Eqs(48) and (49) we obtain which is to be inserted in Eq41). We have found above,

_1 / however, that already the Poisson approximation catches the
Voo (S)=2l¥(S)+ 00" 7,(9)]: 0 gross features of thg nearest neighggr distribution. For this
reason and because the Bernoulli approximation is very te-
dious we will restrict ourselves to the Poisson approximation
at this stage. Thus we consider

For subscripts(o, o) in Eq. (50) the given point and its
neighbors have the same vorticity, while, —o) refers to
the opposite case. Therefore a knowledge of the correlatio
functions G(s) and G,(s) that are calculated in Appendix Y

[formulas(A6) and(A24)] is enough to find the chiral mean fm,,(/)=27-r/g(m,(/)exp{ —wa 20,,(2)dz|.
densities and correlation functions. These chirality- 0

dependent correlation functions are shown graphically in (53)

Fig. 5 in the scaled form Using Egs(50), (52), and(53) one can show that the asymp-

nn tote of f,_,(/) coincides with the asymptote for the
Qo (/)= Yoo (71 p)_ (51)  DFNDNP (29). For f, (), however, we obtain the quite
7 p different form

Also in this case we find good agreement with Berry and . 57 ) )

Dennis[18]. Above we alluded to the general shape of pair Foor (/)= 81 V10m/4~1.007%. (54)
correlation functions for amorphous materials. With the de-

pendence omwr included we may obviously carry this naive  The o-dependent DFNDNR53) for (o, o) and (o, —0)
picture a bit further to talk in a loose way about the nodalare compared with numerical results in Figs. 6 and 7. The
points as a two-component system in which “objects” with difference between the two combinatidfs o) and (o, — o)

the same vorticitietopological chargegepel each other. At is very clear. In the first case there is a strong repulsion
the same time “objects” with opposite may approach each between the nearest neighbors, a result that is to be expected
other closely. Hence we may think about the system of hodadrom Fig. 5. The distribution is, however, of a very simple
points as a thin slab of a fictitious binary amorphous solid oform. Essentially it corresponds a symmetric riffigst shel)
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15 ‘ ‘ ‘ - tures. On the other hand the behavior at large distances needs
further work.

When the distribution of nearest neighbor distances is
separated into distances between nodal points with equal and
opposite chiralities one obtains a picture that superficially
reminds of binary amorphous matter. There are distinct “in-
ner” and “outer shells” associated with opposite and equal
chiralities, respectively. While points with opposite chirali-
ties may get close to each other there is a strong repulsion
o5 | ] among pairs with equal chirality. The reason is, loosely
speaking, that nodal points with equal chirality have to ap-
pear in conjunction with “antivortices” or saddle points.
These “antivortices” act as local “beam splitters” and are
necessary for two nearby vortices to spin the same way.
00 o " s 20 25 These interesting features should be pursued further because

To o the distributions among the different phase singularities are
obviously interrelated. Effectively we may then arrive at a

FIG. 7. Same as in Fig. 6 but for nodal points with opposite description reminding of a ternary amorpous materials.
chiralities o; (/)=0.696. The histogram refers to numerical work  The distributions discussed here relate to generic features
as described in Fig. 2. For this case we fina¢) =0.726. of a wave-chaotic state. For this reason it would be of inter-

est if they could be verified experimentally. Using, e.g., mi-
around the given point. Except for the low tail regions it is crowave cavities this appears to be a real possiHilif)].
well approximated by a Gaussian, i.e., there is basically a
random distribution within the “shell.” ACKNOWLEDGMENTS

In the second cas@, —o), the distribution shows how (?ﬁThis work was supported by the Swedish Institute

f 06,

the nodal points are allowed to come arbitrarily close to eac ) :
other and how the shell structure is less pronounced. F u'ggg’ntrlliuigﬁg?}’g?'ggé%ﬁggé (%Eg'engfasrisl\?é)
small separations$, _, is obviously the dominant term in . o :
Lo , 01-02-16077, and the Swedish Natural Science Research
the total distributionf. Finally we note that/)=0.7 for C " | ful ichael d K
opposite chiralities(topological chargesand (/)=1 for ouncil. We are also grateful to Michael Berry and Mar
' Dennis for discussions and for making Ref$8] and[19]

equal chiralities, i.e., there are “inner” and “outer shells” for . C .
) -y . available to us before publication. The problem of the statis-
opposite and equal vorticities, respectively. As shown by . . . . ,
tical properties of vortices in 2D is somewhat esoteric and

2gfi.cgl ?ggurtstri]r? ;ﬂ'::gtnaapsgﬂgt?\zlloncgifégtd:v;es the NYas remained dormant for many years. It is therefore surpris-
q y Y- ing that we have worked in parallel on this problem.

VI SUMMARY APPENDIX: CORRELATION FUNCTIONS FOR

THE NODAL POINTS
We have considered the distribution among nodal points

associated with chaotic wave dynamics. The nodal points are !N this appendix we outline the somewhat tedious deriva-
of special interest as they are associated with vortical flowion of the various correlation functions. Consider the corre-
and chiralityo that is either+1 or —1. In particular we have lation function of the random densitjt3)

focused on the distribution of nearest separations among th@(s) _

nodal points. The reason is that distributions of this kind may

carry information about chaotic dynamics as conjectured in (| (r)w(r+s)|8u(r))su(r+s))8@(r))s@(r+s))).

[10]. We have introduced analytic approaches based on com-

_ ; . . (A1)
plex Gaussian random functions with the known correlation
function Jo(ks). Two cases have been considered, namelySinceu andv are statistically independent random fields it is
the Poisson and Bernoulli approximations. sufficient to consider only the statistical properties of field

As a supplement to the analytic approaches we have peFirst of all, note that the joint distribution of the values of the
formed numerical calculations to locate the nodal points andcalar Gaussian random field at the pointadr +s has the
their vorticity using the Berry chaotic wave function in Eq. form
(1). The numerical distributions computed in this way are, in
principle, the correct ones and are therefore useful for testing W(U,Us) = (8(u(r) —u)(u(r +s)—uy))
the accuracy of the analytic modeling. We thus find that al- 2, 2

. Co h - 1 u“+ug—2a(s)uug
ready the Poisson approximation gives a good qualitative =—exp{— s
understanding of the distribution of nearest neighbor separa- 2m\1—a?(s) 2[1-a%(s)]
tions. Some higher-order correlations are, however, not ac- (A2)
counted for. For this reason we have also considered the
Bernoulli approximation that picks up some of these fea-Furthermore, we will need the reciprocal statistical properties
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of Gaussian scalar field and its gradientVu. They are

completely defined by the correlation vector
e(s)=(u(r+s)Vu(r)) (A3)

and the correlation tensbx;(s), i,j = 1,2 of vector fieldVu.

It is convenient to project this vector and tensor onto the ¢ — ~ _ ~ _
local coordinate system related to the vecsahrough the

longitudinal components
ur), u(r+s
and the transverse ones

u,(r), u(r+s.

These components have the remarkable correlation proper-

ties
(u(r+9s)uy(r))=e(s),
The tensor correlation function becomes diagonal

(uy(rju

(u(r+sju (r))y=0. (A4)
(r+s)=by(s) (u(nu.(r+s)=b,(s), (A5)
(uy(rju,(r+s))=0.

Here we introduce the following notations:

1d
(51— A (g2 A

s ds

da(s)

1
e(s)=— g5 b0)=b,(0)=5k>=b.

We may then write the density correlation functiohl) as

G(s)= m<| U —oguy [[uysv s~ vyl gf)-
(AB)

For brevity we have written here the dependencesas an
index. The following averages are performed for the eight

manifold Gaussian fields
wu(r),u(r+9)},  {ovy(r),v(r+9)},

{u(Mu(r+9}, {o (N, (r+s)}. (A7)

Here each pair of variables has the correlation properties

(ufy=(vfy=bA(s),
(u?)=(v?)=b,
(Uylys) =(vjvs)=c(s),

(upu, g =(v v, 9=hb,(s), (A8)
where

b[1—a%(s)]—e*(s)
b[1-a%(s)]

A(s)=

PHYSICAL REVIEW €4 036222

_bo)1-as)]-a(9e(s)
AT b-a%(9)]

(A9)

It is convenient to transform to normalized random variables

U S = 5 =0t
I /—bA(S), I ,—bA(S), L \/B, 1 \/B
With the correlation coefficients
_b(s)[1-a*(s)]-a(s)e’(s) b, (s)
= aks)]—eXs) ' PT o
(A10)
expressionA6) now takes the form
A(s)
G(s)=p" 1-a’(s )A(a B, (A11)
where
A(aiﬁ)=<|TJHEL_BHEL||U||SELS_5\\SHLS|> (A12)

and the averaging is performed with respect to the distribu-
tions

u?+u2—2auug
2(1—a?)

1
21— a? F{

w;(U,ug) =

B 1 u?+u2-2puu,
A U

Here distributionw; describes the statistics of “parallel
pairs” {u;,u;s} and{v,,v;s} while w, describes properties
of “perpendicular” ones.

It remains to calculate the functio@12) that will be
done in two steps. First, we average over the statistical en-
semble of parallel componen{s, ,u;s,v;,u;st at all given
perpendicular variables to obtain

A (a,B) <|)\7\sl>m

where notation---), means that all perpendicular variables
are considered as fixed, and that

(A13)

A=TD, —Up,, A=Ul s Vsl

are two Gaussian variables with zero mean values with dis-
persions

(O3 =TE4TE, (M2 =T,
and correlation
(MN\g), =

Let us normalize variables and\ ¢ by the relations

(U, U, s+7,0, ).

Y s

N AN TN

Z:

036222-9
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which transform the functiofA13) as " | £n F{ £ rP— 2B cosu
W(E, 7, 1) = ——exg — —, '
As(a,B =V +o) (Ui toT(|zzl)., (AL4) 2m(1=6°) 2(1-p%)

. . . - . ,7>0, —r,].
wherez and zg are Gaussian variables with unit dispersion &7 pel=—mm]

and the correlation coefficient as To exclude the random variablésand » we rewrite relation
(A18) as
uustovs

={(z = . 1 ﬂ-
y=(2%), a\/(Uf-irvf)(Ufervfs) A(a'ﬁ):ﬂf, Flacosu)A(w,B)du, (A19)

Using the properties of Gaussian random variables one

can derive, after some algebra, the following equation: ~ “€'e
1 o0 o
d2<|2122|>i 2 .A(,U«,,B):—zxf dgf d77§27;2
— 7 =482z)8(2))), =———. (Al 1-827 1o %o
d'yz /1_ 2
e £+ n°—2BEncosp
Taking into account the initial conditions xexg — 2(1- 32 (A20)
| .| _E d<|2122|>1_| ~0 If we use the new variables of integratigm J defined
(|z125]) . y=0"" 1 dy y=0""0 through
we obtain from Eq(A15) é=pcoss, n=psing,

2 the integral(A20) transforms into the form
Fy)=(|zzl). =—[V1=y*+ yarcsiny].  (A16) W .

Al )=31- 827 | "dosit o | “dppexi — b7
Substituting Eq(A16) in Eq. (A14) and averaging over the 0 0

remaining four perpendicular random variables we obtain — Bcosu sing)]
Ala,B)=(A (a,B))=(J (U +v?) (U +v2 ) F(y)). with 6=24. After integration ovep we obtain
(A17)
A(p,B)=(1-B*)?Q(B cosp). (A21)
The angular brackets on the right hand of this equation imply
an averaging over thé variables with the following joint 3z 1+ 272 z T
distribution Q(z)= (1_22)2+ 11— arctal —\/m +§ )
1 (A22)
W(U,Us,v,0¢) = 472(1- B9 Substituting Eq(A21) in Eq. (A19) we finally obtain
2, 2424 2 1-82)2 (x
ex UTtoTtustog 2B(uustvvg) - A(alﬂ):ﬂ Fla cosu)Q(B cosp)du,
2(1- ) 2m Jox
(A23)

In order to perform integration over fout variables

{U,Ug,v,04 We use the polar system of coordinates where the functior( y) is defined by the equalit{A16) and

the functionQ(vy) is given by Eq.(A22).

U, =¢C0Sp, v, =&SiNE U, (=NCOSY, v, =nSiny For the o-dependent density correlation functions it is
' S ' S " easy to show, using the Gaussian properties of the fields
which gives, instead of EqA17), andv, that the correlation function fa#-dependent random

density(11) has the form

Ala,B)=(énFlacosu)) (u=¢—4¢). (Al8) oA
_ 5 2A(s)
Here the three random variabl@s #, u} are distributed as Gu(8)=(Ry(NRy(r+s))=p 1

TZ(S) a(S),B(S). (A24)
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